王彤彤

日期:2023-03-14

基本情况:

王彤彤,讲师,博士研究生

教育背景:

2010年08月—2014年06月,中国矿业大学(北京),矿物加工工程

2015年08月—2017年08月,美国南达科他矿业理工学院,材料工程与科学

2017年08月—2021年12月,美国怀俄明大学,化学工程

所授课程:

《工程图学A》、《工程图学实验课A》、《化工仪表及自动化》等课程

研究方向:

二氧化碳捕集及转化,碳纳米材料合成与应用,沥青基碳纤维制备与应用

研究成果:

1.论文

  1. Sun, K. et al. Synthesis and potential applications of silicon carbide nanomaterials / nanocomposites. Ceramics International 48, 32571-32587, (2022).

  2. Wang, T. et al. Three-dimensional, heteroatom-enriched, porous carbon nanofiber flexible paper for free-standing supercapacitor electrode materials derived from microalgae oil. Fuel Processing Technology 225, 107055, (2022).

  3. Gong, W. et al. High-performance of CrOx/HZSM-5 catalyst on non-oxidative dehydrogenation of C2H6 to C2H4: Effect of supporting materials and associated mechanism. Fuel Processing Technology 233, 107294 (2022).

  4. Lu, W. et al. A new method for preparing excellent electrical conductivity carbon nanofibers from coal extraction residual. Cleaner Engineering and Technology 4, (2021).

  5. Kou, Z. et al. A fast and reliable methodology to evaluate maximum CO2 storage capacity of depleted coal seams: A case study. Energy 231, (2021).

  6. Ye, R.-P. et al. High-performance of nanostructured Ni/CeO2 catalyst on CO2 methanation. Applied Catalysis B: Environmental 268, (2020).

  7. Wang, T. et al. Carbon Nanofibers Prepared from Solar Pyrolysis of Pinewood as Binder-free Electrodes for Flexible Supercapacitors. Cell Reports Physical Science 1, (2020).

  8. Wang, T. et al. Flexible carbon nanofibers for high-performance free-standing supercapacitor electrodes derived from Powder River Basin coal. Fuel 278, (2020).

  9. Wang, T. et al. Synthesis of Highly Nanoporous β-Silicon Carbide from Corn Stover and Sandstone. ACS Sustainable Chemistry & Engineering 8, 14896-14904, (2020).

  10. Tang, M. et al. Effective carbon dioxide stabilization of nanofibers electrospun from raw coal tar and polyacrylonitrile. Journal of Cleaner Production 276, (2020).

  11. He, X. et al. A win-win method for generating carbon material precursors of carbon nanofibers from coal and CO2 and the associated mechanism. Fuel 272, (2020).

  12. Gong, W. et al. Effect of copper on highly effective Fe-Mn based catalysts during production of light olefins via Fischer-Tropsch process with low CO2 emission. Applied Catalysis B: Environmental 278, (2020).

  13. Ye, R.-P. et al. Enhanced stability of Ni/SiO2 catalyst for CO2 methanation: Derived from nickel phyllosilicate with strong metal-support interactions. Energy 188, (2019).

  14. Sun, K. et al. Clean and low-cost synthesis of high purity beta-silicon carbide with carbon fiber production residual and a sandstone. Journal of Cleaner Production 238, (2019).

  15. Song, X. et al. New insight into the reaction mechanism of carbon disulfide hydrolysis and the impact of H2S with density functional modeling. New Journal of Chemistry 43, 2347-2352, (2019).

  16. He, X. et al. Carbon nanofiber generation from the precursor containing unprecedently high percentage of inexpensive coal-derived carbon material. Journal of Cleaner Production 236, (2019).

  17. Ye, R.-P. et al. Recent progress in improving the stability of copper-based catalysts for hydrogenation of carbon–oxygen bonds. Catalysis Science & Technology 8, 3428-3449, (2018).

2.专利

  1. Fan, M.; Sun, K.; Wang, T.; Chen, Z.; Lu, W.; He, X.; Gong, W.; Horner, R. A., Synthesis of high purity beta-silicon carbide. US Patents: 2021.

 

 

image
image